

InfiniTime

	What is InfiniTime
	Generalities about PineTime

	InfiniTime goals

	InfiniTime features - high level

	InfiniTime history
	Project history

	Firmwares history and changelog

	User documentation
	Getting started with InfiniTime
	Unboxing your PineTime

	Boot/Reboot/Switch off InfiniTime

	Setting up date and time
	Using companion apps

	Manually

	Using any Chromium-based web-browser

	Using NRFConnect

	Companion apps

	The InfiniTime UI
	Watchfaces

	Notification screen

	Apps drawer

	Quick settings

	Flash And Upgrade
	Bootloader, Firmware and recovery firmware
	Firmware, InfiniTime, Bootloader, Recovery firmware, OTA, DFU… What is it?

	Bootloader

	The firmware

	Recovery firmware

	Upgrading your PineTime
	Over-The-Air (OTA)
	Using Gadgetbridge
	Connecting to Gadgetbridge

	Updating with Gadgetbridge

	Using Amazfish

	Using ITD

	Using NRFConnect

	Using the SWD interface

	Firmware validation

	Troubleshooting
	Bluetooth connectivity

	How to use InfiniTime apps
	Stopwatch

	Music player

	Navigation directions

	Steps

	Heart-rate

	Timer

	Paint

	Pong

	2048

	Accelerometer

	Metronome

	Alarm

	Developer documentation
	Global architecture
	The low level layer

	The abtraction layer

	The system layer
	FreeRTOS

	Tasks

	The application layer

	Bluetooth

	How to implement an app
	Theory

	Interface
	Continuous updating

	Creating your own app

	Generating the fonts and symbols
	Generate the fonts:

	Simple method to generate a font
	Navigation font

	I use the method above to create the other ttf

	Creating a stopwatch in PineTime

	Tips on designing an app UI

	BLE implementation and API

	Build, flash and debug
	Project branches

	Versioning

	Files included in the release notes

	Build the project
	Dependencies

	Using the command line
	Build steps
	Clone the repo

	Generate the project with CMake

	Build

	Using docker
	Run a container to build the project

	Using the image from Docker Hub

	Build the image

	Using VSCode
	Environment Setup

	VS Code Extensions
	Required Extensions

	Optional Extensions

	VS Code/Docker DevContainer
	DevContainer on Ubuntu

	Dev Container on Windows

	Build the documentation
	Setup

	Build the doc

	Flash the firmware using OpenOCD and STLinkV2

	Build the project with Docker

	Build the project with VSCode

	Bootloader, OTA and DFU

	Stub using NRF52-DK

	Logging with JLink RTT

	Using files from the releases

	How to contribute
	Report bugs

	Write and improve documentation

	Fix bugs, add functionalities and improve the code

	How to submit a pull request?
	TL;DR

	Why all these rules?

	Going further

	Licences

	Credits

Footnotes

What is InfiniTime

Generalities about PineTime

PineTime is an open source smartwatch produced by
Pine64#1.

From Pine64’s website:

“The PineTime is a free and open source smartwatch capable of running
custom-built open operating systems. Some of the notable features include a
heart rate monitor, a week-long battery, and a capacitive touch IPS display that
is legible in direct sunlight. It is a fully community driven side-project which
anyone can contribute to, allowing you to keep control of your device.”

More details can be found on the PineTime page of the Pine64
website#2.

InfiniTime goals

The goal of this project is to design an open-source firmware for the Pinetime
smartwatch :

	Code written in modern C++

	Build system based on CMake

	Based on FreeRTOS 10.0.0#3 real-time OS

	Using LittleVGL/LVGL 7#4 as UI library

	and NimBLE 1.3.0#5 as BLE stack

InfiniTime features - high level

InfiniTime implements the following features:

	Rich user interface via display, touchscreen and pushbutton

	Time synchronization via Bluetooth Low Energy (BLE)

	Time setup via the watch itself

	Notifications via BLE

	Heart rate measurements

	Steps counting

	Wake-up on wrist rotation

	Quick actions

	Disable vibration on notification

	Brightness settings

	Flashlight

	Settings

	3 watch faces:

	Digital

	Analog

	PineTimeStyle#6

	Multiple ‘apps’ :

	Music (control the playback of music on your phone)

	Heart rate (measure your heart rate)

	Navigation (displays navigation instructions coming from the companion app)

	Notification (displays the last notification received)

	Paddle (single player pong-like game)

	Twos (2048 clone game)

	Stopwatch

	Alarm App

	Steps (displays the number of steps taken)

	Timer (set a countdown timer that will notify you when it expires)

	Metronome (vibrates to a given bpm with a customizable beats per bar)

	User settings:

	Display timeout

	Wake-up condition

	Time format (12/24h)

	Default watch face

	Daily steps goal

	Battery status

	Firmware validation

	System information

	Supported by multiple companion apps (development is in progress):

	Gadgetbridge#7 (on Android via F-Droid)

	Amazfish#8 (on SailfishOS and Linux)

	Siglo#9 (on Linux)

	ITD#10 (on Linux)

	[Experimental] WebBLEWatch#11 Synchronize time directly from your web browser. video#12

	[Experimental] InfiniLink#13 (on iOS)

	OTA (Over-the-air) update via BLE

	Bootloader#14 based on
MCUBoot#15

InfiniTime history

Project history

The project was started by JF#16 in October 2019.
JF already knew Pine64 as a company that builds ARM-based SBCs, and had
followed the Pinebook Pro and PinePhone.
In September 2019, JF saw an article about the PineTime, an open-source
smartwatch, stating that Pine64 was looking for developers to build a software
running on it.

After he contacted Pine64 to explain his motivation, he got sent a PineTime dev
kit and starting tinkering with it.

The first version of the bootloader, based on MCUBoot, was written by Lup
Yuen#17.

The first versions of InfiniTime were mainly a one-man show, but quickly a lot
of developers joined the project, and the speed of development and therefore new
features increased a lot:

	The first release, version 0.1.0 already provided basic functionalities :
display the time, BLE connection and time synchronization. There was no touch
interface, the UI was slow and basic.

	Version 0.2.2 was the first release that received contributions from other
developpers :)
project!

	Version 0.3 switched from a custom graphics library to LittleVGL, a light and
versatile graphics library for embedded systems.

	Version 0.5 introduced a change of the BLE stack: instead of using the NRF
SoftDevice (the BLE stack from Nordic Semiconductor), the decision was taken
to use NimBLE#18, an open source BLE
stack.

Amazfish, a companion app for Sailfish OS and Linux, added support for
InfiniTime, becoming the first companion app for the smartwatch.

	Version 0.6 brought the OTA functionality, allowing users to upgrade the
firmare over-the-air, using their smartphone and BLE connectivity.

	Version 0.7.1, which brought improvements, optimisations, became the official
firmware sent with new PineTime (previous firmware was a “work in progress”
one, and closed-source).

Firmwares history and changelog

The releases history can be found here on
GitHub#19.

For a list with a summary of new features for each release, please see this
article#20.

Footnotes

	#1

	https://www.pine64.org

	#2

	https://www.pine64.org/pinetime/

	#3

	https://freertos.org/

	#4

	https://lvgl.io/

	#5

	https://github.com/apache/mynewt-nimble

	#6

	https://wiki.pine64.org/wiki/PineTimeStyle

	#7

	https://codeberg.org/Freeyourgadget/Gadgetbridge/

	#8

	https://openrepos.net/content/piggz/amazfish

	#9

	https://github.com/alexr4535/siglo

	#10

	https://gitea.arsenm.dev/Arsen6331/itd/

	#11

	https://hubmartin.github.io/WebBLEWatch/

	#12

	https://youtu.be/IakiuhVDdrY

	#13

	https://github.com/xan-m/InfiniLink

	#14

	https://github.com/JF002/pinetime-mcuboot-bootloader

	#15

	https://www.mcuboot.com/

	#16

	https://github.com/JF002/

	#17

	https://lupyuen.github.io/

	#18

	https://github.com/apache/mynewt-nimble

	#19

	https://github.com/InfiniTimeOrg/InfiniTime/releases

	#20

	https://www.ncartron.org/pinetimes-infinitime-firmwares-history60.html

User documentation

This part of the documentation is meant for end users.

For developer documentation, please refer to this page

Getting started with InfiniTime

Unboxing your PineTime

The box contains:

	the PineTime,

	a USB-A charger/craddle,

	a quick user guide.

Boot/Reboot/Switch off InfiniTime

The PineTime has a single button, located on the left hand side.

	To start/boot your PineTime, simply hold the button for a few seconds until
the Pine64 logo appears,

	if nothing happens, you may have to charge the watch beforehand.

	To reboot/restart the watch, press and hold the button for approximately 8
seconds

	Release the button at that stage, otherwise you will trigger another action
(see Recovery
firmware and Firmware
validation
for more details).

	It is not possible to switch it off.

Setting up date and time

By default, InfiniTime starts on the digital watchface. It’ll probably display
the epoch time (1 Jan 1970, 00:00).

You can set the time (and date) manually, or have a companion app do it for you.

InfiniTime doesn’t handle daylight savings automatically, so make sure to set
the correct time or sync with a companion app.

Using companion apps

Date and time are set by the companion app once the PineTime is connected over
BLE.

Manually

Starting with InfiniTime 1.7, it is possible to configure the date and
time directly from the watch.

This can be done from the Settings menu, then “Set date” and “Set time”
respectively:

[image: Set date manually]
[image: Set time manually]

Using any Chromium-based web-browser

You can use WebBLE#1 from a
Chromium-based browser (Chrome, Chromium, Edge, Chrome Android) to setup the
date and time.

(insert here pics of WebBLE GH)

Using NRFConnect

You must enable the CTS GATT server into NRFConnect so that InfiniTime can
synchronize the time with your smartphone.

Launch NRFConnect, tap the sandwich button on the top left and select Configure
GATT server:

Tap Add service and select the server configuration Current Time service.
Tap OK and connect to your PineTime, it should automcatically sync the time once
the connection is established!

(insert pics from
https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/doc/gettingStarted/ota-gadgetbridge-nrfconnect.md#using-nrfconnect-1)

Companion apps

PineTime can be used as a standalone watch, displaying date and time (which can
be configured from the watch itself since InfiniTime 1.7.0), as well as
heart-rate, number of steps, used as a torchlight, or just to play the included
games (2048, Pong, and Draw).

To get more features, Companion apps, which are applications running on a
smartphone or a computer, and are paired to the PineTime, are required.

There are multiple Companion apps available:

	Smartphones:

	Android: GadgetBridge#2

	SailfishOS: Amazfish#3

	iOS: InfiniLink#4

	PinePhone (Linux phone): Siglo#5

	Linux Computer:

	Amazfish#6 and
Siglo#7 will also work, but may require
some manual installation.

	ITD#8

The InfiniTime UI

The UI is composed of 4 different areas:

	the main watchface

	the notification screen (swipe down)

	apps drawer (swipe up)

	quick settings (swipe right)

Watchfaces

The default watchface is the “digital one”, which displays date and time, as
well as the number of steps, heart-rate, bluetooth icon (when connected),
battery status, and possibly missed notifications.

There are 2 other watchfaces:

	Analog

	PineTimeStyle

[image: Digital watchface]
[image: Analog watchface]
[image: PTS watchface]

Notification screen

When swiping down, the last notification is displayed.

Up to 5 notifications can be displayed: simply swipe up again the display the
next notification.

To come back to the watchface, press the left button.

It is currently not possible to discard notifications, unless you restart
InfiniTime (long press on the button for ~8 seconds).

[image: Notification]

Apps drawer

When swiping up, the apps drawer allows launching applications.

There are 2 pages with each 6 applications (2 rows of 3 apps):

Page 1:

	Stopwatch

	Music control

	Navigation (only works with PureMaps/Sailfish OS)

	Steps counter

	Heart-rate

	Countdown

Page 2:

	Draw

	Pong game

	2048 game

	Accelerometer

	Metronome

	Alarm

[image: App menu 1]
[image: App menu 2]

Quick settings

When swiping right, you get access to 4 icons :

[image: Quick settings]

	brightness level: pressing it will cycle between 3 levels (low/medium/high)

	torch:

	a tap launches it,

	another tap switches it on,

	another one switches it off,

	swiping to the right or left changes the brightness level of the torch

	silent mode:

	a green bell symbol means silent mode is off (so the watch will vibrate when
receiving a notification),

	taping it enables it: the icon becomes grey, and the watch will not vibrate
when receiving notifications)

	settings: access to InfiniTime settings

The following settings are available:

[image: Settings 1]
[image: Settings 2]
[image: Settings 3]

	Display timeout (in seconds)

	Wake up: how to wake up the watch

	nothing selected means only the left button wakes up the watch

	single tap: tap one time on the screen to wake up the watch

	double tap: tap two times to wake it up

	raise wrist: screen will wake up when you raise your wrist

	Time format: 12h or 24h

	Watch face: choose between digital, analog and PineTimeStyle

	Steps: define your daily goal

	Set date: allows manually setting date

	Set time: allows manually setting time

	Battery: displays battery level and voltage

	Chimes: Emit a small vibration every hour or half-hour

	Shake calibration: calibration the sensitivity of the “shake to wake” functionality

	Firmware: displays information about the InfiniTime version

	About: displays information about InfiniTime, the Bootloader, uptime, etc

Flash And Upgrade

Bootloader, Firmware and recovery firmware

Firmware, InfiniTime, Bootloader, Recovery firmware, OTA, DFU… What is it?

You may have already encountered these words by reading the announcement,
release notes, or the wiki
guide#9 and
you may find them confusing if you’re not familiar with the project.

A firmware is software running on the embedded hardware of a device.

InfiniTime has three distinct firmwares:

	InfiniTime#10 is the operating system.

	The bootloader#11 is responsible for safely applying firmware updates and runs before booting into InfiniTime.

	The recovery firmware is a special application firmware than can be
loaded by the bootloader on user request. This firmware can be useful in case
of serious issue, when the main application firmware cannot perform an OTA
update correctly.

OTA (Over The Air) refers to updating of the firmware over BLE
(Bluetooth Low Energy). This is a functionality that allows the user to update
the firmware on their device wirelessly.

DFU (Device Firmware Update) is the file format and protocol
used to send the update of the firmware to the watch over-the-air. InfiniTime
implements the (legacy) DFU protocol from Nordic Semiconductor (NRF).

Bootloader

The
bootloader#12
is run right before booting into InfiniTime.

It is easily recognizable with its white pine cone that is progressively drawn
in green. It also displays its own version at the bottom (1.0.0 as of now).

[image: Bootloader_v1]

Most of the time, the bootloader just runs without your intervention (update and load the firmware).

However, you can enable 2 functionalities using the push button:

	Push the button until the pine cone is drawn in blue to force the rollback of
the previous version of the firmware, even if you’ve already validated the
updated one

	Push the button until the pine cone is drawn in red to load the recovery
firmware. This recovery firmware only provides BLE connectivity and OTA
functionality.

More info about the bootloader on its project
page#13.

The firmware

Well, it’s InfiniTime :)

You can check the InfiniTime version by first swiping right on the watchface to
open quick settings, tapping the cogwheel to open settings, swipe up until you
find an entry named “About” and tap on it.

[image: Firmware_v1.0]

Recovery firmware

The recovery functionality allows to load a recovery
firmware#14 from
the external flash memory to recover the PineTime when the current firmware
cannot boot anymore.

This recovery firmware is a slightly modified version of InfiniTime that only
provides a basic UI and the OTA functionality. You’ll be able to use this
firmware to load a new firmware over-the-air using BLE connectivity.

This
article#15
describes how to upgrade your PineTime to benefit from this feature.

PineTime units shipped after (confirm date with JF) come with the recovery
firmware already installed, so there’s no need to follow this procedure.

Upgrading your PineTime

There are 2 ways to upgrade your PineTime:

	“Over-The-Air”, i.e. using the Bluetooth connectivity to send firmware from a
companion app: this is recommended for sealed devices

	using the SWD interface: only possible for dev / non-sealed units, as it
requires access to the internals of the watch.

Over-The-Air (OTA)

To update your PineTime, you can use one of the compatible companion
applications.

The updating process differs slightly on every companion app, so you’ll need to
familiarize yourself with the companion app of your choice.

All releases of InfiniTime are available on the release page of the GitHub
repo#16
under assets.

To update the firmware, you need to download the DFU of the firmware version
that you’d like to install, for example pinetime-mcuboot-app-dfu-1.6.0.zip, and
flash it with your companion app.

Using Gadgetbridge

(Pics from the original
article#17
will be added soon).

Connecting to Gadgetbridge

	Launch Gadgetbridge and tap on the “+” button on the bottom right to add a new device:
(add pic)

	Wait for the scan to complete, your PineTime should be detected:
(add pic)

	Tap on it. Gadgdetbridge will pair and connect to your device:
(add pic)

Updating with Gadgetbridge

Now that Gadgetbridge is connected to your PineTime, use a file browser
application and find the DFU file (pinetime-mcuboot-app-dfu-x.x.x.zip) you
downloaded previously.

Tap on it and open it using the Gadgetbridge application/firmware installer:

(add pic)

Read carefully the warning and tap Install:

(add pic)

Wait for the transfer to finish. Your PineTime should reset and reboot with the
new version of InfiniTime!

Don’t forget to validate your firmware. In the InfiniTime go to the settings
(swipe right, select gear icon) and Firmware option and click validate.
Otherwise after reboot the previous firmware will be used.

(add pic)

Using Amazfish

Please see this
article#18
which describes how to use Amazfish on Sailfish OS to upgrade your PineTime.

Instructions also apply if you’re running Amazfish on Linux.

Using ITD

ITD comes with a graphical user interface, called itgui, which allows
upgrading InfiniTime.

Please see ITD’s README#19 for
more details.

Using NRFConnect

	Open NRFConnect. Swipe down in the Scanner tab and wait for your device to appear:

(add pic)

	Tap on the Connect button on the right of your device. NRFConnect will connect
to your PineTime and discover its characteristics. Tap on the DFU button on
the top right:

(add pic)

	Select Distribution packet (ZIP):

(add pic)

	Find the DFU file (pinetime-mcuboot-app-dfu-x.x.x.zip) you downloaded
previously, the DFU transfer will start automatically. When the transfer is
finished, your PineTime will reset and restart on the new version of
InfiniTime!
Don’t forget to validate your firmware. In the InfiniTime go to the settings
(swipe right, select gear icon) and Firmware option and click validate.
Otherwise after reboot the previous firmware will be used.

Using the SWD interface

Download the files bootloader.bin, image-x.y.z.bin and
pinetime-graphics-x.y.z.bin from the releases
page#20.

The bootloader reads a boot logo from the external SPI flash memory. The first
step consists of flashing a tool in the MCU that will flash the boot logo into
this SPI flash memory. This first step is optional but recommended (the
bootloader will display garbage on screen for a few second if you don’t do it).
Using your SWD tool, flash pinetime-graphics-x.y.z.bin at offset 0x0000. Reset
the MCU and wait for a few second, until the logo is completely drawn on the
display.

Then, using your SWD tool, flash those file at specific offset:

	bootloader.bin : 0x0000

	image-x.y.z.bin : 0x8000

Reset and voilà, you’re running InfiniTime on your PineTime!

Firmware validation

Firmware updates must be manually validated. If the firmware isn’t validated and
the watch resets, the watch will revert to the previous firmware. This is a
safety feature to prevent bricking your device with faulty firmware.

You can validate your updated firmware on InfiniTime >= 1.0 by following this
simple procedure:

	From the watchface, swipe right to display the quick settings menu

	Open settings by tapping the cogwheel on the bottom right

	Swipe up until you find an entry named Firmware and tap on it

	If the firmware is not validated yet, you can either validate the running
firmware, or reset and revert to the previous firmware version

Troubleshooting

Bluetooth connectivity

InfiniTime versions prior to 1.6.0 “Ice Apple” had a known BLE bug, which caused
lost of Bluetooth connectivity after a few hours.

The only way to fix this was to restart the watch (by holding the button for ~8
seconds).

This bug has been fixed, and with 1.6 and onwards, BLE connectivity is a lot
more reliable.

Footnotes

	#1

	https://hubmartin.github.io/WebBLEWatch/

	#2

	https://gadgetbridge.org/

	#3

	https://openrepos.net/content/piggz/amazfish/

	#4

	https://github.com/xan-m/InfiniLink

	#5

	https://github.com/alexr4535/siglo

	#6

	https://openrepos.net/content/piggz/amazfish/

	#7

	https://github.com/alexr4535/siglo

	#8

	https://gitea.arsenm.dev/Arsen6331/itd/

	#9

	https://wiki.pine64.org/wiki/Upgrade_PineTime_to_InfiniTime_1.0.0

	#10

	https://github.com/InfiniTimeOrg/InfiniTime

	#11

	https://github.com/JF002/pinetime-mcuboot-bootloader

	#12

	https://github.com/JF002/pinetime-mcuboot-bootloader/releases/tag/1.0.0

	#13

	https://github.com/JF002/pinetime-mcuboot-bootloader/blob/master/README.md

	#14

	https://github.com/InfiniTimeOrg/InfiniTime/releases/tag/0.14.1

	#15

	https://www.ncartron.org/pinetimes-infinitime-new-bootloader-and-a-recovery-firmware.html

	#16

	https://github.com/InfiniTimeOrg/InfiniTime/releases

	#17

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/doc/gettingStarted/ota-gadgetbridge.md

	#18

	https://www.ncartron.org/upgrading-pinetimes-infinitime-firmware.html

	#19

	https://gitea.arsenm.dev/Arsen6331/itd/#itgui

	#20

	https://github.com/InfiniTimeOrg/InfiniTime/releases

How to use InfiniTime apps

Stopwatch

[image: Stopwatch]

The stopwatch measures passed time in minutes, seconds and hundredths of seconds.

When the stop watch is not running, the left button shows a stop symbol and resets the current time to zero. It is not clickable when the time is already zero.
The right button shows a start symbol and starts the stop watch.

While the stop watch is running, the left button shows a flag.
Tapping it allows to register an intermediate time without stopping the measurement.
The last two intermediate times are shown below the running time besides.
The right button shows a pause symbol. Tapping it pauses the measurement (without resetting it).

Music player

[image: Music control]

Navigation directions

[image: Navigation]

Steps

[image: Steps]

The steps screen shows the current number of steps in the middle and your current steps goal and trip count underneath.
Around it is a circular meter that shows how much of your goal you already achieved.

The steps count is measured daily and will be reset at midnight.
You can configure your step goal in the settings.

Your trip steps will not be reset at midnight.
You can do this yourself by pressing the Reset button on the bottom of the screen.

Heart-rate

[image: Heart-rate]

The heart rate app measures your heart rate using the sensor on the backside of the watch. When you activate the heart rate measurement, a fast blinking green light comes out of .

At the beginning, the measurement is turned off.
The screen shows a grey “000” and “stopped” underneath.
Press the “Start”-button at the bottom of the screen activate the measurement.
After starting the measurement, the measurement should become green and the text underneath should be “Not enough data, please wait …”.
After a short while (~ 10 seconds), the text should be “Measuring …” and on the top there should be a number that is your measured heart rate.

To stop the measurement, press the button at the bottom, which should now be labeled with “Stop”.

Keep in mind that InfiniTime and the PineTime watch are no medical devices. The measured number is not guaranteed to be your actual heart rate. See this feature more as a toy.

Timer

[image: Timer]

The Timer app lets you set a timer after which your watch will vibrate once and wake up if it was asleep.

The screen shows two digits for minutes and two digits for seconds, each with a button labeled “+” above and a button labeled “-” beneath.
Tapping those buttons lets you set the desired duration until the timer vibrates.

At the bottom of the screen is a button with a play icon.
Tapping it activates the timer and changes the play button to a pause button.
Tapping the pause button pauses the timer.

Paint

[image: InfiniPaint]

InfiniPaint is an app that lets you draw using the touchscreen.

At the start, the app will show a black screen.
Touching the screen will let you draw white pixels.
If you hold a touch for long enough, there will be a vibration and you will have a new color.

Pong

[image: Paddle]

Pong is a little game that you can play.
In the middle of the screen is a little ball that will bounce of the walls except the left one.
At the left side there is a bar that will bounce the ball.
You can control it by touching the screen
Each time you keep the ball inside the screen will earn you one point.
Your points are shown at the top of the screen.
Try to get as many points as possible.

2048

[image: 2048]

2048 is a puzzle game you can play.
At the start, you can see a four by four grid of cells and your score at the top, which should be zero.
Some of the cells will be filled with numbers that are powers of two.
Your goal is to make as many moves as possible and thereby earn as many points as possible.
You make a move by swiping either up, down, left or right.
All numbers on the grid will then move as far in this direction as possible.
When two numbers with the same values collide, they will be added to a single cell.

Accelerometer

[image: Accelerometer]

The accelerometer visualizes the accelerations along the x, y and z axis that are measured by the motion sensor of the watch.
In the bottom left corner, it also shows your current step count.

Metronome

[image: Metronome]

The metronome app lets you have a vibrating metronome on your wrist.
The metronome vibrates on each beat.
The first beat of each bar is stronger than the other ones.

Move the dot on the arc to change the bpm (beats per minute) that are shown in the middle.

On the bottom are two buttons.
Tapping the left one opens a scrollable list from which you can select how many bpb (beats per bar) you would like to have.
Tap a number in the list to select it.
The right button shows a play sign if the metronome is paused and a pause sign if the metronome is running.
Use it to start or pause the metronome.

Alarm

[image: Alarm]

The alarm app lets you set an alarm to wake you up in the morning (or whenever).

The screen contains two digits for the hour on the left and two digits for the minutes on the right.
Above and beneath each are buttons labeled with “+” and “-” that let you modify the time.

At the bottom of the screen there are two buttons.
The left one is either grey and labeled “OFF” or green and labeled “ON”. Tapping it, toggles it between those two. It shows whether the alarm is active or not.
The right button is labeled either “ONCE”, “DAILY” or “MON-FRI”. Tapping it cycles between those three. It shows on which days the alarm will ring when it is active.

At the top, in the middle is a button labeled “i”.
Tapping it informs you, how many time is left before the next alarm.

When the alarm rings, the watch vibrates repeatedly and shows the alarm app.
The bottom left button is then red and labeled with a stop sign.
Press it, to end the ringing.

Footnotes

Developer documentation

Global architecture

[image: Project structure]

The project is composed of multiple layers:

The low level layer

The low level layer is composed of mostly hardware dependent software modules : startup code, low level drivers for clocks, busses, peripherals,…
Most of these modules are provided by the NRF SDK, but some drivers (I2C and SPI, for example) were reimplemented to better fit the needs of the project.

The abtraction layer

The abstraction layer is composed of components and controllers that abtracts the hardware from the upper layers while providing higher level APIs and services for these layers.

Those controllers#1 are, among others:

	The battery controller#2 that handles the battery level measurements and conversion

	The file system#3 that allows the application to easily read and write data to the flash memory

	The motion controller#4 that provides motion and step information from the motion sensor

	and many others…

The system layer

The system layer is composed of the RTOS (FreeRTOS) and the tasks needed for the firmware to run properly. These tasks are mainly the System task and the display task. This layer also implements a message passing mecanism (based on message queues) that allows tasks to exchange messages and events.

FreeRTOS

InfiniTime is based on FreeRTOS#5, a real-time operating system. FreeRTOS provides several quality of life abstractions (for example easy software timers) and most importantly supports multiple tasks. If you want to read up on real-time operating systems, you can look
here#6 and here#7. The main “process” (the function main())creates at least one task and then starts the FreeRTOS task scheduler. The task scheduler is responsible for giving every task enough cpu time. As
there is only one core on the SoC of the PineTime, real concurrency is impossible and the scheduler has to swap tasks in and out to emulate it.

Tasks

Tasks are created by calling xTaskCreate() and passing a function with the signature void functionName(void*). For more info on task creation see the FreeRTOS Documentation#8.

System task is the main task of the project. It’s responsible for initializing all devices and peripheral at startup, for managing and routing events between the tasks and the controllers, for managing the wake and sleep mode, for responding to external events (button press, touch even),…
It’s implement in the class PineTime::System::SystemTask#9. It provides 2 main methods: SystemTask::Start() that starts the task, and SystemTask::Work() which is the method the task executes. It starts by initializing all device and peripherals and then enters into its main loop.

Display task is implemented in the class PineTime::Applications::DisplayApp#10. Similarly to System task, it provides the methods Start() and Work(). Display task handles the whole UI : it responds to touch and button events, it switches between apps, refresh the UI according to user interactions,…

The BLE stack (NimBLE)#11 creates 2 other tasks (ll and ble)#12 to handle the whole BLE processing.

An additional task handles the signal processing for the heart rate monitor : PineTime::Applications::HeartRateTask#13.

The application layer

The application layer implements the applications visible to the user (watch faces, settings, music application, games,…).

The UI is based on the Light and versatile graphics library (LVGL)#14.

Bluetooth

Header files with short documentation for the functions are inside
libs/mynewt-nimble/nimble/host/include/host/.

How to implement an app

Theory

The user interface of InfiniTime is made up of screens.
Screens that are opened from the app launcher are considered apps.
Every app in InfiniTime is it’s own class.
An instance of the class is created when the app is launched and destroyed when
the user exits the app.
They run inside the “displayapp” task (briefly discussed here).
Apps are responsible for everything drawn on the screen when they are running.
By default, apps only do something (as in a function is executed) when they are
created or when a touch event is detected.

Interface

Every app class has to be inside the namespace Pinetime::Applications::Screens
and inherit from Screen.
The constructor should have at least one parameter DisplayApp* app, which it
needs for the constructor of its parent class Screen.
Other parameters should be references to controllers that the app needs.
A destructor is needed to clean up LVGL and restore any changes (for example
re-enable sleeping).
App classes can override bool OnButtonPushed(), bool OnTouchEvent(TouchEvents event) and bool OnTouchEvent(uint16_t x, uint16_t y) to implement their own
functionality for those events.
If an app only needs to display some text and do something upon a touch screen
button press,
it does not need to override any of these functions, as LVGL can also handle
touch events for you.
If you have any doubts, you can always look at how the other apps are doing
things.

Continuous updating

If your app needs to be updated continuously, you can do so by overriding the
Refresh() function in your class and calling lv_task_create inside the
constructor.

An example call could look like this:

taskRefresh = lv_task_create(RefreshTaskCallback, LV_DISP_DEF_REFR_PERIOD, LV_TASK_PRIO_MID, this);

With taskRefresh being a member variable of your class and of type
lv_task_t*.
Remember to delete the task again using lv_task_del.
The function RefreshTaskCallback is inherited from Screen and just calls
your Refresh function.

Creating your own app

A minimal app could look like this:

MyApp.h:

#pragma once

#include "displayapp/screens/Screen.h"
#include <lvgl/lvgl.h>

namespace Pinetime {
 namespace Applications {
 namespace Screens {
 class MyApp : public Screen {
 public:
 MyApp(DisplayApp* app);
 ~MyApp() override;
 };
 }
 }
}

MyApp.cpp:

#include "displayapp/screens/MyApp.h"
#include "displayapp/DisplayApp.h"

using namespace Pinetime::Applications::Screens;

MyApp::MyApp(DisplayApp* app) : Screen(app) {
 lv_obj_t* title = lv_label_create(lv_scr_act(), nullptr);
 lv_label_set_text_static(title, "My test application");
 lv_label_set_align(title, LV_LABEL_ALIGN_CENTER);
 lv_obj_align(title, lv_scr_act(), LV_ALIGN_CENTER, 0, 0);
}

MyApp::~MyApp() {
 lv_obj_clean(lv_scr_act());
}

Both of these files should be in displayapp/screens/
or displayapp/screens/settings/ if it’s a
setting app.

Now we have our very own app, but InfiniTime does not know about it yet.
The first step is to include your MyApp.cpp (or any new cpp files for that
matter)
in the compilation by adding it to CMakeLists.txt.
The next step to making it launchable is to give your app an id.
To do this, add an entry in the enum class Pinetime::Applications::Apps
(displayapp/Apps.h).
Name this entry after your app. Add #include "displayapp/screens/MyApp.h" to
the file displayapp/DisplayApp.cpp.
Now, go to the function DisplayApp::LoadApp and add another case to the switch
statement.
The case will be the id you gave your app earlier.
If your app needs any additional arguments, this is the place to pass them.

If you want to add your app in the app launcher, add your app in
displayapp/screens/ApplicationList.cpp
to one of the CreateScreen functions, or add another CreateScreen function
if there are no empty spaces for your app. If your app is a setting, do the same
procedure in
displayapp/screens/settings/Settings.cpp.

You should now be able to build the firmware
and flash it to your PineTime. Yay!

Please remember to pay attention to the UI guidelines
when designing an app that you want to be included in InfiniTime.

Generating the fonts and symbols

You can download fonts using the links below:

	Jetbrains Mono#15

	Awesome font from LVGL#16

	Open Sans Light from Google#17

Generate the fonts:

	Open the LVGL font converter#18

	Name : jetbrains_mono_bold_20

	Size : 20

	Bpp : 1 bit-per-pixel

	Do not enable font compression and horizontal subpixel hinting

	Load the file JetBrainsMono-Bold.tff (use the file in this repo to ensure the version matches) and specify the following range : 0x20-0x7f, 0x410-0x44f

	Add a 2nd font, load the file FontAwesome5-Solid+Brands+Regular.woff and specify the following
range : 0xf293, 0xf294, 0xf244, 0xf240, 0xf242, 0xf243, 0xf241, 0xf54b, 0xf21e, 0xf1e6, 0xf54b, 0xf017, 0xf129, 0xf03a, 0xf185, 0xf560, 0xf001, 0xf3fd, 0xf069, 0xf1fc, 0xf45d, 0xf59f, 0xf5a0, 0xf029, 0xf027, 0xf028, 0xf6a9, 0xf04b, 0xf04c, 0xf048, 0xf051, 0xf095, 0xf3dd, 0xf04d, 0xf2f2, 0xf024, 0xf252, 0xf569, 0xf201, 0xf06e, 0xf015

	Click on Convert, and download the file jetbrains_mono_bold_20.c and copy it in src/DisplayApp/Fonts

	Add the font .c file path to src/CMakeLists.txt

	Add an LV_FONT_DECLARE line in src/libs/lv_conf.h

Add new symbols:

	Browse the cheatsheet#19 and find your new symbols

	For each symbol, add its hex code (0xf641 for the ‘Ad’ icon, for example) to the Range list (Remember to keep this
readme updated with newest range list)

	Convert this hex value into a UTF-8 code
using this site#20

	Define the new symbols in src/displayapp/screens/Symbols.h:

static constexpr const char* newSymbol = "\xEF\x86\x85";

Simple method to generate a font

If you want to generate a basic font containing only numbers and letters, you
can use the above settings but instead of specifying a range, simply list the
characters you need in the Symbols field and leave the range blank. This is the
approach used for the PineTimeStyle watchface.
This works well for fonts which will only be used to display numbers, but will
fail if you try to add a colon or other punctuation.

	Open the LVGL font converter#21

	Name : open_sans_light

	Size : 150

	Bpp : 1 bit-per-pixel

	Do not enable font compression and horizontal subpixel hinting

	Load the file open_sans_light.tff (use the file in this repo to ensure the
version matches) and specify the following symbols : 0123456789

	Click on Convert, and download the file open_sans_light.c and copy it in
src/DisplayApp/Fonts

	Add the font .c file path to src/CMakeLists.txt (search for jetbrains to find
the appropriate location/format)

	Add an LV_FONT_DECLARE line in src/libs/lv_conf.h (as above)

Navigation font

To create the navigtion.ttf I use the web app icomoon#22.
This app can import the svg files from the folder
src/displayapp/icons/navigation/unique and create a ttf file the
project for the site is lv_font_navi_80.json you can import it to add or
remove icons

You can also use the online LVGL tool to create the .c

ttf file : navigation.ttf name : lv_font_navi_80 size : 80px Bpp : 2 bit-per-pixel range : 0xe900-0xe929

$lv_font_conv –font navigation.ttf -r ‘0xe900-0xe929’ –size 80 –format lvgl –bpp 2 –no-prefilter -o
lv_font_navi_80.c

I use the method above to create the other ttf

Creating a stopwatch in PineTime

This article#23 from
Pankaj Raghav describes in details how to create a stopwatch app in InfiniTime.

Tips on designing an app UI

	Align objects all the way to the edge or corner

	Buttons should generally be at least 50px high

	Buttons should generally be on the bottom edge

	Make interactable objects big

	When using a page indicator, leave 8px for it on the right side

	It is acceptable to leave 8px on the left side as well to center the content

	Top bar takes at least 20px + padding

	Top bar right icons move 8px to the left when using a page indicator

	A black background helps to hide the screen border, allowing the UI to look
less cramped when utilizing the entire display area.

(add link to [image: example layouts])

BLE implementation and API

Footnotes

	#1

	https://github.com/InfiniTimeOrg/InfiniTime/tree/develop/src/components

	#2

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/components/battery/BatteryController.h

	#3

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/components/fs/FS.h

	#4

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/components/motion/MotionController.h

	#5

	https://www.freertos.org

	#6

	https://www.freertos.org/implementation/a00002.html

	#7

	https://www.freertos.org/features.html

	#8

	https://www.freertos.org/a00125.html

	#9

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/systemtask/SystemTask.h

	#10

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/displayapp/DisplayApp.h

	#11

	https://github.com/apache/mynewt-nimble

	#12

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/libs/mynewt-nimble/porting/npl/freertos/src/nimble_port_freertos.c

	#13

	https://github.com/InfiniTimeOrg/InfiniTime/blob/develop/src/heartratetask/HeartRateTask.h

	#14

	https://lvgl.io/

	#15

	https://www.jetbrains.com/fr-fr/lp/mono/

	#16

	https://lvgl.io/assets/others/FontAwesome5-Solid+Brands+Regular.woff

	#17

	https://fonts.google.com/specimen/Open+Sans

	#18

	https://lvgl.io/tools/fontconverter

	#19

	https://fontawesome.com/cheatsheet/free/solid

	#20

	http://www.ltg.ed.ac.uk/~richard/utf-8.cgi?input=f185&mode=hex

	#21

	https://lvgl.io/tools/fontconverter

	#22

	https://icomoon.io/app

	#23

	https://blog.pankajraghav.com/2021/04/03/PINETIME-STOPCLOCK.html

Build, flash and debug

Project branches

Versioning

Files included in the release notes

Build the project

Dependencies

To build this project, you’ll need:

	A cross-compiler : ARM-GCC (9-2020-q2-update)#1

	The NRF52 SDK 15.3.0 : nRF-SDK v15.3.0#2

	The Python 3 modules cbor, intelhex, click and cryptography modules for the mcuboot tool (see requirements.txt)

	To keep the system clean, you can install python modules into a python virtual environment (venv)

python -m venv .venv
source .venv/bin/activate
python -m pip install wheel
python -m pip install -r tools/mcuboot/requirements.txt

	A reasonably recent version of CMake (I use 3.16.5)

Note that you do not need to install those dependencies on your system if you use Docker to build the project.

Using the command line

Build steps

Clone the repo

Clone the repo and update the submodules:

git clone https://github.com/InfiniTimeOrg/InfiniTime.git
cd InfiniTime
git submodule update --init
mkdir build
cd build

Generate the project with CMake

Run CMake to generate the project. Here’s the default command line

cmake -DARM_NONE_EABI_TOOLCHAIN_PATH=/path/to/the/toolchain -DNRF5_SDK_PATH=/path/to/the/sdk ..

You can specify a few more options:

	-DCMAKE_BUILD_TYPE : specify the build type (Release or Debug). The Release mode is selected by default. It enables various optimizations from the compiler to reduce the binary size and increase perfromances. Debug mode does not enable those optimizations. It makes the binary easier to debug but it’ll run slower and the binary file will be bigger.

	-DBUILD_DFU : enables (1) or disables (0) the generation of the DFU file (needed for this OTA udate). Note that this option needs adafruit-nrfutil#3 installed on your system.

Build

Run make to build the project:

make -j

This command will build all the targets of the project (see below). You can also specify a specific target you want to build:

make -j pinetime-mcuboot-app

Here’s the list of CMake targets:

	pinetime-app

	pinetime-mcuboot-app

	pinetime-recovery

	pinetime-mcuboot-recovery

	pinetime-recovery-loader

	pinetime-mcuboot-recovery-loader

Binary files are generated in the src/ subfolder.

These files are named with various extensions:

	.bin files are binary files corresponding to the firmware. These files are intended to be ran by the MCU of the PineTime.

	.hex files are binary files formatted in the Intel HEX format#4.

	.map files contains the memory mapping generated by the compiler#5. Useful to understand the memory usage and mapping of the firmware.

	.out files are intended to be used by a debugger (GDB) to debug the firmware running on the PineTime

You’ll find various files named according to their respective cmake target:

	pinetime-app : The standalone version of the firmware. This firmware must be flashed at offset 0x00 and runs without the bootloader. You can use this binary to debug (using a SWD debugger) the firmware faster and more easily as it doesn’t rely on the bootloader.

	pinetime-mcuboot-app : The firmware with support for the bootloader. The file pinetime-mcuboot-app-x.y.z.bin must be converted into an MCUBoot image for the bootloader to be able to run it. This image is named pinetime-mcuboot-app-image-x-y-z.bin and it can be flashed at offset 0x8000. A DFU file for the OTA update is also generated (if the option BUILD_DFU was enabled during cmake generation) : pinetime-mcuboot-app-dfu-x.y.z.zip.

	pinetime-recovery is the recovery firmware (standalone).

	pinetime-mcuboot-recovery is the bootloader variant of the recovery firmware. The MCUBoot image (pinetime-mcuboot-recovery-image) and the DFU file (pinetime-mcboot-recovery-dfu) are also generated.

	pinetime-recovery-loader is a firmware that updates the bootloader of the PineTime. Use this firmware with caution as it erases and overwrites the bootloader of your PineTime. There’s no fallback in case of issue during this operation. The MCUBoot image and DFU file are also generated.

Most of the time, you’ll only need the file pinetime-mcuboot-app-image to update the firmware using a SWD debugger or the file pinetime=-mcuboot-app-dfu to update it over the air using a BLE device.

See below for more info on flashing and upgrading your firmware on your PineTime.

Using docker

A Docker image (Dockerfile) containing all the build environment is available for X86_64 and AMD64 architectures. These images make the build of the firmware and the generation of the DFU file for OTA quite easy, as well as preventing clashes with any other toolchains or development environments you may have installed.

Based on Ubuntu 18.04 with the following build dependencies:

	ARM GCC Toolchain

	nRF SDK

	MCUBoot

	adafruit-nrfutil

Run a container to build the project

The infinitime-build image contains all the dependencies you need. The default CMD will compile sources found in /sources, so you need only mount your code.

Before continuing, make sure you first build the image as indicated in the Build the image section, or check the Using the image from Docker Hub section if you prefer to use a pre-made image.

This example will build the firmware, generate the MCUBoot image and generate the DFU file. For cloning the repo, see these instructions. Outputs will be written to <project_root>/build/output:

cd <project_root> # e.g. cd ./work/Pinetime
docker run --rm -it -v $(pwd):/sources infinitime-build

If you only want to build a single CMake target, you can pass it in as the first parameter to the build script. This means calling the script explicitly as it will override the CMD. Here’s an example For pinetime-app:

docker run --rm -it -v $(pwd):/sources infinitime-build /opt/build.sh pinetime-app

The image is built using 1000:1000 for the user id and group id. If this is different to your user or group ids (run id -u and id -g to find out what your id values are if you are unsure), you will need to override them via the --user parameter in order to prevent permission errors with the output files (and the cmake build cache).

Running with this image is the same as above, you just specify the ids to docker run:

docker run --rm -it -v $(pwd):/sources --user $(id -u):$(id -g) infinitime-build

Or you can specify your user id and group id (by number, not by name) directly:

docker run --rm -it -v $(pwd):/sources --user 1234:1234 infinitime-build

Using the image from Docker Hub

NOTE : This image is provided by a contributor and might not be up-to-date.

The image is available via Docker Hub for both the amd64 and arm64v8 architectures at pfeerick/infinitime-build#6.

It can be pulled (downloaded) using the following command:

docker pull pfeerick/infinitime-build

The default latest tag should automatically identify the correct image architecture, but if for some reason Docker does not, you can specify it manually:

	For AMD64 (x86_64) systems: docker pull pfeerick/infinitime-build:amd64

	For ARM64v8 (ARM64/aarch64) systems: docker pull pfeerick/infinitime-build:arm64v8

Build the image

You can build the image yourself if you like!

The following commands must be run from the root of the project. This operation will take some time but, when done, a new image named infinitime-build is available.

docker image build -t infinitime-build ./docker

The PUID and PGID build arguments are used to set the user and group ids used in the container, meaning you will not need to specify it later unless they change for some reason. Specifying them is not mandatory, as this can be over-ridden at build time via the --user flag, but doing so will make the command you need to run later a bit shorter. In the below examples, they are set to your current user id and group id automatically. You can specify them manually, but they must be specified by number, not by name.

docker image build -t infinitime-build --build-arg PUID=$(id -u) --build-arg PGID=$(id -g) ./docker

Using VSCode

The .VS Code folder contains configuration files for developing InfiniTime with VS Code. Effort was made to have these rely on Environment variables instead of hardcoded paths.

At the moment building using VSCode on Windows has not been done yet. Using the devcontainer is probably the easiest way.

Environment Setup

To support as many setups as possible the VS Code configuration files expect there to be certain environment variables to be set.

	Variable

	Description

	Example

	ARM_NONE_EABI_TOOLCHAIN_PATH

	path to the toolchain directory

	export ARM_NONE_EABI_TOOLCHAIN_PATH=/opt/gcc-arm-none-eabi-9-2020-q2-update

	NRF5_SDK_PATH

	path to the NRF52 SDK

	export NRF5_SDK_PATH=/opt/nRF5_SDK_15.3.0_59ac345

VS Code Extensions

We leverage a few VS Code extensions for ease of development.

Required Extensions

	C/C++#7 - C/C++ IntelliSense, debugging, and code browsing.

	CMake Tools#8 - Extended CMake support in Visual Studio Code

Optional Extensions

Cortex-Debug#9 - ARM Cortex-M GDB Debugger support for VS Code

Cortex-Debug is only required for interactive debugging using VS Codes built in GDB support.

VS Code/Docker DevContainer

The .devcontainer folder contains the configuration and scripts for using a Docker dev container for building InfiniTime

Using the Remote-Containers#10 extension is recommended. It will handle configuring the Docker virtual machine and setting everything up.

More documentation is available in the readme in .devcontainer

DevContainer on Ubuntu

To use the DevContainer configuration on Ubuntu based systems two changes need to be made:

	Modify the file .devcontainer/devcontainer.json and add the argument "--net=host" to the "runArgs" parameter making the line look like this:
"runArgs": ["--cap-add=SYS_PTRACE", "--security-opt", "seccomp=unconfined", "--net=host"],

	Modify the file .vscode/launch.json and change the argument of "gdbTarget" to "127.0.0.1:3333", making the line look like:
"gdbTarget": "127.0.0.1:3333",

	To start debugging launch openocd on your host system with the appropriate configuration, for example with a stlink-v2 the command is:
openocd -f interface/stlink.cfg -f target/nrf52.cfg. This launches openocd with the default ports 3333, 4444 and 6666.

	In VsCode go to the Debug pane on the left of the screen and select the configuration Debug - Openocd docker Remote and hit the play button on the left.

Dev Container on Windows

To use the DevContainer configuration on Windows a few files need their line endings changed, e.g. by using notepad++#11

\InfiniTime\tools\mcuboot\imgtool.py
\InfiniTime\tools\mcuboot\imgtool_init_.py
\InfiniTime\tools\mcuboot\imgtool\boot_record.py
\InfiniTime\tools\mcuboot\imgtool\image.py
\InfiniTime\tools\mcuboot\imgtool\version.py

You also need to install cbor with pip install cbor or by running pip install -r requirements.txt in \Infitime\tools\mcuboot.

Build the documentation

Setup

The documentation is written in Markdown (.md) files and generated using the Sphinx documentation generator.

First, we need to install Sphinx and its dependencies:

	myst-parser : add support for markdown files

	sphinx_rtd_theme : theme from ReadTheDocs

pip install sphinx
pip install myst-parser
pip install sphinx_rtd_theme

Build the doc

Run the following command in the folder docs

sphinx-build -b html ./ ./generated

Then display the doc by browsing to generated/index.html using your favorite web browser.

Flash the firmware using OpenOCD and STLinkV2

Build the project with Docker

Build the project with VSCode

Bootloader, OTA and DFU

Stub using NRF52-DK

Logging with JLink RTT

Using files from the releases

Footnotes

	#1

	https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/9-2020-q2-update

	#2

	https://developer.nordicsemi.com/nRF5_SDK/nRF5_SDK_v15.x.x/nRF5_SDK_15.3.0_59ac345.zip

	#3

	https://github.com/adafruit/Adafruit_nRF52_nrfutil

	#4

	https://en.wikipedia.org/wiki/Intel_HEX

	#5

	https://en.wikipedia.org/wiki/MAP_(file_format)

	#6

	https://hub.docker.com/r/pfeerick/infinitime-build

	#7

	https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

	#8

	https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools

	#9

	https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug

	#10

	https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

	#11

	https://notepad-plus-plus.org/

How to contribute

Report bugs

Have you found a bug in the firmware? Create an issue on
Github#1 explaining the bug,
how to reproduce it, the version of the firmware you use…

Write and improve documentation

Documentation might be incomplete, or not clear enough, and it is always
possible to improve it with better wording, pictures, photo, video,…

As the documentation is part of the source code, you can submit your
improvements to the documentation by submitting a pull request (see below).

Fix bugs, add functionalities and improve the code

You want to fix a bug, add a cool new functionality or improve the code? See
How to submit a pull request below.

How to submit a pull request?

TL;DR

	Create a branch from develop

	Work on a single subject in this branch. Create multiple
branches/pulls-requests if you want to work on multiple subjects (bugs,
features,…)

	Test your modifications on the actual hardware

	Check your code against the coding conventions
and clang-format and clang-tidy

	Clean your code and remove files that are not needed

	Write documentation related to your new feature if applicable

	Create a pull request and write a great description about it: what does your
PR do, why, how,… Add pictures and video if possible

	Wait for someone to review your PR and take part in the review process

	Your PR will eventually be merged :)

Your contributions are more than welcome!

If you want to fix a bug, add functionality or improve the code, you’ll first
need to create a branch from the develop branch (see this page about the
branching model). This branch is called a feature branch, and
you should choose a name that explains what you are working on (ex:
“add-doc-about-contributions”). In this branch, focus on only one topic, bug
or feature. For example, if you created this branch to work on the UI of a
specific application, do not commit modifications about the SPI driver. If you
want to work on multiple topics, create one branch for each topic.

When your feature branch is ready, make sure it actually works and do not
forget to write documentation about it if it’s relevant.

Creating a pull request containing modifications that haven’t been tested is
strongly discouraged. If for any reason you cannot test your modifications,
but want to publish them anyway, please mention it in the description. This
way, other contributors might be willing to test it and provide feedback about
your code.

Before submitting a PR, check your code against the coding
conventions. This project also provides
clang-format and clang-tidy configuration
files. You should use them to ensure correct formatting of your code.

Don’t forget to check the files you are going to commit and remove those which
aren’t necessary (config files from your IDE, for example). Remove old comments,
commented code,…

Then, you can submit a pull request for review. Try to describe your pull
request as much as possible: what did you do in this branch, how does it work,
how it is designed, are there any limitations,… This will help the
contributors to understand and review your code easily. You can add pictures and
video to the description so that contributors will have a quick overview of your
work.

Other contributors can post comments about the pull request, maybe ask for more
info or adjustments in the code.

Once the pull request is reviewed and accepted, it’ll be merged into develop
and will be released in the next version of the firmware.

Why all these rules?

Reviewing pull requests is a very time consuming task. Everything you do to
make reviewing easier will get your PR merged faster.

Reviewers will first look at the description. If it’s easy to understand
what the PR does, why the modification is needed or interesting and how it’s
done, a good part of the work is already done : we understand the PR and its
context.

Reviewing a few files that were modified for a single purpose is a lot
easier than reviewing 30 files modified for many reasons (bug fix, UI
improvements, typos in doc,…), even if all the changes make sense. Also, it’s
possible that we agree on some modification but not on another, so we won’t be
able to merge the PR because of the changes that are not accepted.

The code base should be kept as consistent as possible. If the formatting of
your code is not consistent with the rest of the code base, we’ll ask you to
review it.

Lastly the changes are tested. If it doesn’t work out of the box, we’ll ask you
to review your code and to ensure that it works as expected.

It’s totally normal for a PR to need some more work even after it was created,
that’s why we review them. But every round trip takes time, so it’s good
practice to try to reduce them as much as possible by following those simple
rules.

Footnotes

	#1

	https://github.com/InfiniTimeOrg/InfiniTime/issues

Going further

	The PineTime wiki#1

	InfiniTime resources from other people

	Videos

	Articles

Footnotes

	#1

	https://wiki.pine64.org/wiki/PineTime

Licences

This project is released under the GNU General Public License version 3 or, at
your option, any later version.

It integrates the following projects:

	RTOS : FreeRTOS#1 under the MIT license

	UI : LittleVGL/LVGL#2 under the MIT license

	BLE stack : NimBLE#3 under the Apache 2.0 license

	Font : Jetbrains Mono#4 under the Apache 2.0 license

Footnotes

	#1

	https://freertos.org

	#2

	https://lvgl.io/

	#3

	https://github.com/apache/mynewt-nimble

	#4

	https://www.jetbrains.com/fr-fr/lp/mono/

Credits

Many people work on InfiniTime, creating PR, submitting bugs and issues, …
There is also the whole #Pinetime community : a lot of people all
around the world who are hacking, searching, experimenting and programming the
Pinetime. We exchange our ideas, experiments and code in the chat rooms and
forums.

Here are some people we would like to highlight:

	Atc1441#1 : He works on an Arduino based
firmware for the Pinetime and many other smartwatches based on similar
hardware. He was of great help when JF was implementing support for the BMA421
motion sensor and I²C driver.

	Koen#2 : He’s working on a firmware based on
RiotOS. He integrated similar libs as me : NimBLE, LittleVGL,… His help was
invaluable too!

	Lup Yuen Lee#3 : He is everywhere: he works on a
Rust firmware, builds a MCUBoot based bootloader for the Pinetime, designs a
Flutter based companion app for smartphones and writes a lot of articles
about the Pinetime!

If you feel like you should appear on this list, just get in touch with us or submit a PR :)

Footnotes

	#1

	https://github.com/atc1441/

	#2

	https://github.com/bosmoment

	#3

	https://github.com/lupyuen

Index

 _images/watchface_analog.png
THU
03

PineTime

_images/watchface_digital.png
20:31

_images/firmware-v1.0.jpg
InfiniTime | \
Version 1.8.8

Build ddte
Apr 21 2021
T, ~ 18:20:54

|
(
|

y

_images/hr.png
Heart rate BPM

Stop

_static/file.png

_images/architecture.png
Apps (watch faces,

INFIN! settings, games,...) Application layer
TIM

System layer

Abstraction layer

Low level drivers Low level layer

INIRIE SIS (SPI, 12C,...)

_images/watchface_pts.png

_images/bootloader-1.0.jpg

 Skip to content

 Sign up

 		

 Product

 		

 Features

 		

 Mobile

 		

 Actions

 		

 Codespaces

 		

 Packages

 		

 Security

 		

 Code review

 		

 Issues

 		

 Integrations

 		

 GitHub Sponsors

 		

 Customer stories

 		
 Team

 		
 Enterprise

 		

 Explore

 		

 Explore GitHub

 		Learn and contribute

 		

 Topics

 		

 Collections

 		

 Trending

 		

 Learning Lab

 		

 Open source guides

 		Connect with others

 		

 The ReadME Project

 		

 Events

 		

 Community forum

 		

 GitHub Education

 		

 GitHub Stars program

 		
 Marketplace

 		

 Pricing

 		

 Plans

 		

 Compare plans

 		

 Contact Sales

 		

 Education

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this organization

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in

 Sign up

 {{ message }}

 InfiniTimeOrg

 /

 InfiniTime

 Public

 		

 		

Notifications

 		

Fork
 524

 		

 Star
 1.5k

 		

 Code

 		

 Issues
 171

 		

 Pull requests
 95

 		

 Actions

 		

 Projects
 3

 		

 Wiki

 		

 Security

 		

 Insights

 More

 		

 Code

 		

 Issues

 		

 Pull requests

 		

 Actions

 		

 Projects

 		

 Wiki

 		

 Security

 		

 Insights

Permalink

 develop

 Switch branches/tags

 Branches
 Tags

 Could not load branches

 Nothing to show

 {{ refName }}
 default

 View all branches

 Could not load tags

 Nothing to show

 {{ refName }}
 default

 View all tags

 InfiniTime/doc/gettingStarted/bootloader-1.0.jpg

 Go to file

 		

 Go to file
 T

 		

 Go to line
 L

 		

 		

 Copy path

 		

 Copy permalink

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 Cannot retrieve contributors at this time

 72.1 KB

 Download

 		

 Open with Desktop

 		

 Download

 [image: bootloader-1.0.jpg]

 Go

 		

 © 2022 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Docs

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

_images/navigation.png
Navigation

_images/notifications.png
Notification 0/o

No notification
to display

_images/metronome.png

_static/minus.png

_images/music.png
—eteef--i--

Waiting for
track information..

L} | 4 M

_static/plus.png

_images/paddle.png
0001

_images/paint.png

_images/alarm.png

_images/app_menu_1.png

_images/accelerometer.png
Steps ©

ze

_images/app_menu_2.png

_images/quick_settings.png

nav.xhtml

 Table of Contents

 		
 InfiniTime

 		
 What is InfiniTime

 		
 Generalities about PineTime

 		
 InfiniTime goals

 		
 InfiniTime features - high level

 		
 InfiniTime history

 		
 Project history

 		
 Firmwares history and changelog

 		
 User documentation

 		
 Getting started with InfiniTime

 		
 Unboxing your PineTime

 		
 Boot/Reboot/Switch off InfiniTime

 		
 Setting up date and time

 		
 Companion apps

 		
 The InfiniTime UI

 		
 Flash And Upgrade

 		
 Bootloader, Firmware and recovery firmware

 		
 Upgrading your PineTime

 		
 Firmware validation

 		
 Troubleshooting

 		
 Bluetooth connectivity

 		
 How to use InfiniTime apps

 		
 Stopwatch

 		
 Music player

 		
 Navigation directions

 		
 Steps

 		
 Heart-rate

 		
 Timer

 		
 Paint

 		
 Pong

 		
 2048

 		
 Accelerometer

 		
 Metronome

 		
 Alarm

 		
 Developer documentation

 		
 Global architecture

 		
 The low level layer

 		
 The abtraction layer

 		
 The system layer

 		
 The application layer

 		
 Bluetooth

 		
 How to implement an app

 		
 Theory

 		
 Interface

 		
 Creating your own app

 		
 Generating the fonts and symbols

 		
 Generate the fonts:

 		
 Simple method to generate a font

 		
 Creating a stopwatch in PineTime

 		
 Tips on designing an app UI

 		
 BLE implementation and API

 		
 Build, flash and debug

 		
 Project branches

 		
 Versioning

 		
 Files included in the release notes

 		
 Build the project

 		
 Dependencies

 		
 Using the command line

 		
 Using docker

 		
 Using VSCode

 		
 Build the documentation

 		
 Setup

 		
 Build the doc

 		
 Flash the firmware using OpenOCD and STLinkV2

 		
 Build the project with Docker

 		
 Build the project with VSCode

 		
 Bootloader, OTA and DFU

 		
 Stub using NRF52-DK

 		
 Logging with JLink RTT

 		
 Using files from the releases

 		
 How to contribute

 		
 Report bugs

 		
 Write and improve documentation

 		
 Fix bugs, add functionalities and improve the code

 		
 How to submit a pull request?

 		
 TL;DR

 		
 Why all these rules?

 		
 Going further

 		
 Licences

 		
 Credits

_images/settings_menu_1.png
2 © 0 #

Display
Wake Up
Time format

Watch face

_images/settings_menu_2.png
« Steps

© set date

© sSet time

& Battery

_images/set_date.png
© set current date

+ + +

3 Mar 2022

Set

_images/set_time.png
© set current time
20:40:00

Set

_images/stopwatch.png
EN

0:03.91
0:04.11

_images/timer.png

_images/settings_menu_3.png
Chimes

2 ©

Shake Calib.

Firmware

v

About

_images/steps.png
0

Goal: 10000
Trip: [:]

Reset

_images/twos.png

